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Abstract

The homogenization method is used as a framework for developing a multiscale system of equations involving atoms

at zero temperature at the small scale and continuum mechanics at the very large scale. The Tersoff–Brenner Type II

potential [Physical Review Letters 61(25) (1988) 2879; Physical Review B 42 (15) (1990) 9458] is employed to model the

atomic interactions while hyperelasticity governs the continuum. A quasistatic assumption is used together with

the Cauchy–Born approximation to enforce the gross deformation of the continuum on the positions of the atoms. The

two-scale homogenization method establishes coupled self-consistent variational equations in which the information at

the atomistic scale, formulated in terms of the Lagrangian stiffness tensor, concurrently feeds the material information

to the continuum equations. Analytical results for a one dimensional molecular wire and numerical experiments for a

two dimensional graphene sheet demonstrate the method and its applicability.
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1. Introduction

A large amount of research interest has focused on the multiscale problem involving atoms and con-

tinua. It is widely accepted that many effects on the continuum germinate at the atomic level. Events such as

fracture, fatigue, and inelastic material response can be traced back to phenomena in the atomic structure.

Moreover, fabrication of nanoscale devices in mass quantities will likely come from nanopatterning

techniques (e.g., see (Rosa et al., 2000)). Creating patterns at the nanometer scale will like involve un-

foreseen effects when coupled to mechanical loads. Therefore, a computational mechanics method is neces-
sary that can couple disparate scales––one scale in which the boundary conditions are applied and the other

in which atoms reside.

Methodologies for linking a continuum to an atomistic domain can be found in the literature as early as

1971 (Sinclair, 1971). Finite element methods were later employed by Mullins and Dokainish (1982) using a
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numerically decoupled domain approach with spatially overlapping atomistic and continuum regions. A

review of some of these methods can be found by Cleri et al. (1998). Among these early analytic and

computational studies, frequent issues regarding the treatment of the interface arose which were primarily

handled through creative use of kinematic constraints.
More recently Tadmor et al. (1996) developed a finite element-based formulation, the so-called quasi-

continuum method. Similar efforts were made through the so-called handshaking or coupling-of-length-

scales (CLS) method by Broughton et al. (1999) by increasing the atomic resolution to account for electron

degrees of freedom via the tight-binding (TB) method. The dynamic problem was studied with a gene-

ralized scaling approach in coarse-grained molecular dynamics (CGMD) by Rudd and Broughton

(2000) to better handle the propagation of waves through the atomistic-FE interface and the FE far

field.

Multiscale methods such as these have traditionally been limited mainly to localized regions of interest.
For example, the applications to which these methods have been applied involve small sets of dislocations

and cracks and limited analyses of their mutual interactions. The localized regions on which these simu-

lations are run typically span, at most, tens of microns because of the bottleneck imposed by a direct in-

terface between the continuum region and atomistic region. To ensure compatibility, kinematic constraints

are used to tie together the equations and disparate length scales across this interface. Driving the reso-

lution of the discretized continuum finite elements down to the atom scale intrinsically restricts the size of

the continuum and leads to smaller overall dimensions of the problem. This can only be overcome by larger

use of computer resources when dealing with problems with larger dimensions.
The asymptotic expansion homogenization method has been widely studied by applied mathematicians

for many years. Numerous texts on the basic theory can be found in the literature, for instance, by Ben-

soussan et al. (1978), Sanchez-Palencia (1980), and Bakhvalov and Panasenko (1989). Yet, despite the

prolific research in the field, no attempts have been documented for extending the technique to atoms.

Homogenization may be particularly suited for nanopatterned systems because of its use of periodicity

and asymptotics in the assumptions; perhaps even more so than traditional homogenization applications,

such as composites. This is because in most cases the ratio of scales in atomistic-continuum problems better

represents the asymptotic assumption in homogenization than other types of multiscale problems. Fur-
thermore, the periodic nature of nanopatterned systems is more apt at realistically adhering to the periodic

assumption than unit cell models of composite material inclusions.

In this paper, a computational framework for homogenization of the atomistic problem is presented.

Using two concurrent domains, one for the macroscale continuum domain and one for the periodic atomic

scale domain, self-consistent sets of equations are derived. Atoms in arbitrary configurations and structures

of unlimited size are permitted. Through the asymptotic expansion homogenization technique, a set of

hierarchical equations are derived based on hyperelasticity. At the local level, the atomistic equations are

used under the assumption of the harmonic approximation to generate the effective properties needed to
solve the effective global level equations. The Cauchy–Born rule (Ericksen, 1984) is applied to the atoms to

enforce the gross deformation of the continuum on the atoms. This circumvents the need to apply kine-

matic constraints by making use of the averaging features of homogenization.

The contents of this paper are as follows. In Section 2, the conventional continuum equations are shown,

eventually leading to a variational form based on the principle of virtual work. Then, in Section 3, the

multiscale equations are developed, resulting in two sets of equations which govern the local and global

length scales. By introducing the atomistic potential in Sections 4 and 5, the details of the atomistic for-

mulations are presented and cast in a variational form for use in the multiscale homogenization method. In
Section 6, the derivatives of the atomistic energy potential needed to complete the derivation of the method

are provided in a general form. In Section 7, 1-D and 2-D demonstrative examples are shown. Closing

remarks are discussed in Section 8. Additional details of the analytical derivatives of the Tersoff–Brenner

Type II potential are presented in Appendix A.
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2. Continuum formulations

This section describes the kinematics, stress definitions, and linear momentum conservation laws needed

to develop the homogenization method from atomistic principles.

2.1. Kinematics

Consider an open set V in R3 that deforms to the configuration v in R3. Points in V are denoted

X ¼ ðX1;X2;X3Þ 2 V and are called material points, while points in v are denoted x ¼ ðx1; x2; x3Þ 2 v and are

called spatial points. The deformation is a one-to-one mapping through / so that x ¼ /ðX Þ. The defor-

mation gradient is defined by

F ¼ o/

oX
¼ ox

oX
¼ r0x and Fij ¼

o/i
oXj

¼ oxi
oXj

; ð1Þ

where r0 signifies the gradient taken with respect to the material frame. The determinant of F is termed the

Jacobian and is defined by J ¼ det F. The right Cauchy-Green strain tensor is defined by

C ¼ FTF; ð2Þ

and the Green strain tensor is defined by

E ¼ 1
2
ðC� IÞ: ð3Þ

2.2. Stress and equilibrium

The material representation for the conservation of linear momentum is defined by

r0 � Pþ f0 ¼ 0; ð4Þ

where P is the first Piola–Kirchoff stress tensor and f0 is the body force per unit of undeformed volume. In

rate form, it is given by

r0 � _PPþ _f0f0 ¼ 0: ð5Þ
Using the principle of virtual work, Eq. (5) can be rewritten asZ

V
ðr0 � _PPÞdudV þ

Z
V

_ff0 � dudV ¼ 0; 8du; ð6Þ

where du is the virtual displacement. Then, using the definition for traction with respect to the undeformed

body, Eq. (6) can be rewritten asZ
V

_PP : r0dudV ¼
Z
oV

_tt0 � dudAþ
Z
V

_ff0 � dudV : ð7Þ

We invoke the notion of hyperelasticity by assuming that the atomistic potential, W, which is a function
of the atom positions, can be expressed in terms of strain. This assumes that the strain energy density (or

the free energy at zero temperature) is equivalent to the atomistic energy potential. Following classical

continuum mechanics, one can then define the first Piola–Kirchoff stress as

P ¼ oW

oF
and Pij ¼

oW

oFij
; ð8Þ
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and the first Lagrangian elasticity tensor (Marsden and Hughes, 1983) as

C ¼ o2W

oFoF
¼ oP

oF
and Cijkl ¼

o2W

oFijoFkl
¼ oPij

oFkl
: ð9Þ

A relationship is needed between stress and strain. From Eq. (9), one can see that in hyperelastic materials,

P is related to F through

_PP ¼ C _FF and _PPij ¼ Cijkl
_FFkl; ð10Þ

where

_FF ¼ o _uu=oX ¼ ov=oX; ð11Þ

and where _uu ¼ v denotes the velocity.

Substituting Eq. (10) into (7) and using (11) yieldsZ
V

C :: ðr0du
r0vÞdV ¼
Z
oV

_tt0 � dudAþ
Z
V

_ff0 � dudV ; 8du; ð12Þ

and the equivalent indicial form,Z
V
Cijkl

odui
oXj

ovk
oXl

dV ¼
Z
oV

_tt0idui dAþ
Z
V
f0idui dV : ð13Þ

This is the virtual work equation associated with hyperelasticity. The two-scale approach is described next.
It is devised so that traditional finite element continuum equations can be solved in the coarse scale and

atomistic equations can be solved in the fine scale.

3. Homogenization

The homogenization framework enables the weak coupling of the continuum to the atoms. By taking the

limit of the time-independent asymptotic expansion parameter e ! 0, we exploit the weak convergence

properties of the scheme in order to decouple the length scales. At the fine scale, the domain contains only

atoms with periodic conditions prescribed on the boundary, and all atom displacements are measured
relative to a fixed point in the local frame of reference. From classical examples of continuum mechanics of

composite materials (Mura, 1987) this enables the method to account for mutual interactions of periodi-

cally spaced heterogeneities or, in this case, periodic lattice defects. It should be noted that for this for-

mulation, any general periodic arrangement of atoms may be treated such as quantum dots or epitaxial

systems (Tang and Torres, 1996), as long as the interest is in mechanical and deformation coupling of the

atoms with macroscopic scales.

The homogenization method is based on the assumption that two scales exist––a coarse scale and a fine

scale. Coordinates in the coarse material scale are X ¼ ðX1;X2;X3Þ, and those in the fine material scale are
Y ¼ ðY1; Y2; Y3Þ. Likewise, the spatial coordinates are the lowercase analogues. The two scales are related by

the scale parameter

Y ¼ X

e
: ð14Þ

Therefore, we assume that the ratio of scales remains the same before and after deformation. The aim is to

obtain two sets of coupled equations. The asymptotic series assumption decomposes the displacements as
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uðXÞ ¼ u½0
ðXÞ þ u½1
ðXÞ ð15Þ
¼ u½0
ðXÞ þ eu½1
ðYÞ; ð16Þ

where u½0
 represents the displacement at the coarse scale and u½1
 represents the perturbed displacements due

to inhomogeneity at the fine scale. Square brackets denote the order of the term in the asymptotic series.

The actual physical representation of the total displacement at the fine scale is given by Takano et al. (2000)

as

1

e
uðXÞ ¼ umicroðYÞ

¼ Fðu½0
ðXÞÞYþ u½1
ðYÞ:
ð17Þ

The variable X in Eq. (17) is a fixed value with respect to Y. That is, the deformation gradient of a point in

the coarse scale gets mapped onto a fine scale grid. This point is typically a quadrature point in a finite

element sense.

The time derivatives are analogous to Eqs. (16) and (17). They are given as

_uuðXÞ ¼ vðXÞ

¼ v½0
ðXÞ þ ev½1
ðYÞ; ð18Þ

_uumicroðYÞ ¼ vmicroðXÞ

¼ Fðv½0
ðXÞÞYþ v½1
ðYÞ: ð19Þ

Substituting Eqs. (16) and (18) into Eq. (13) yieldsZ
V

C :: ½rX ðdu½0
ðXÞ þ edu½1
ðYÞÞ 
 rX ðv½0
ðXÞ þ ev½1
ðYÞÞ
dV

¼
Z
oV
ðdu½0
ðXÞ þ edu½1
ðYÞÞ � _tt0 dAþ

Z
V
ðdu½0
ðXÞ þ edu½1
ðYÞÞ � _ff0 dV ; 8du½0
; du½1
: ð20Þ

Note that by use of the chain rule and Eq. (14),

rX/ðX;YÞ ¼ rX/ þ oY

oX
rY/

¼ rX/ þ 1

e
rY/:

ð21Þ

Therefore,

rX ðu½0
ðXÞ þ eu½1
ðYÞÞ ¼ rXu
½0
ðXÞ þ rY u

½1
ðYÞ: ð22Þ

Using Eq. (22) in (20) and taking the average over Y givesZ
V

1

jY j

Z
Y

C :: ½ðrXdu½0
ðXÞ þ rY du
½1
ðYÞÞ 
 ðrX v

½0
ðXÞ þ rY v
½1
ðYÞÞ
dY dV

¼
Z
oV
ðdu½0
ðXÞ þ edu½1
ðYÞÞ � _tt0 dAþ

Z
V
ðdu½0
ðXÞ þ edu½1
ðYÞÞ � _ff0 dV ; 8du½0
; du½1
: ð23Þ
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Then, in the limit as e ! 0, Eq. (23) is satisfied only if the following two equations are satisfied,

1

jY j

Z
V

Z
Y

C :: ½rXdu½0
ðXÞ 
 ðrX v
½0
ðXÞ þ rY v

½1
ðYÞÞ
dY dV

¼
Z
oV

du½0
ðXÞ � _tt0 dAþ
Z
V

du½0
ðXÞ � _ff0 dV ; 8 du½0
 ð24Þ

1

jY j

Z
V

Z
Y

C :: ½rY du
½1
ðYÞ 
 ðrX v

½0
ðXÞ þ rY v
½1
ðYÞÞ
dY dV ¼ 0; 8 du½1
: ð25Þ

By recourse to the finite element method, the solution of Eq. (24) is straightforward, assuming C and v½1
 are
known. It is then evident that due to the dependence of Eq. (25) on v½0
, Eqs. (24) and (25) are coupled and

must be solved concurrently. For general problems, an iterative numerical solution scheme can be em-

ployed to handle the nonlinear system of equations together with a linearly ramped load to ensure solution

convergence.

In the next section, a method is shown for solving Eq. (25) for v½1
. Then in the following section, the

formulation that enables the atomistic information to be fed into Eq. (24) is derived. These two sections

constitute the iteration steps that must be performed for a general application.

4. Atomistic equation

Distinct and distinguishable atoms are assumed to reside in the local level cell. By the Cauchy–Born rule

(Ericksen, 1984), at a point X, Fðu½0
Þ is assumed to give the energy minimizing configuration of the atoms.

For simplicity, we assume that the atoms are arranged in a lattice. 1 Then, the positions of the atoms Y are

given from the lattice coordinates m by

YðmÞ ¼ mei : m 2 L; L ¼ Z3; Z6N; ð26Þ

where ei are the primitive translation vectors and N is the integer multiple of atoms contained in the unit

cell. To avoid confusion in notation, atom labels are noted in parentheses henceforth and are not subject to

the conventional summation rules associated with indicial notation. The displacement of the atoms are

qðmÞ : m 2 L: ð27Þ

Upon deformation, the new positions of the atoms are given by

yðmÞ ¼ YðmÞ þ qðmÞ: ð28Þ

The deformation gradient is defined by

F ¼ oy

oY
: ð29Þ

The vector separating two atoms i and j in the reference configuration is given by

RðijÞ ¼ YðjÞ � YðiÞ; ð30Þ

where YðjÞ denotes the position of atom j and YðiÞ the position of atom i. The vector separating two atoms in

the deformed configuration is given by

rðijÞ ¼ yðjÞ � yðiÞ: ð31Þ

1 Note that there is no restriction to perfect lattices. In fact, by using computers, general amorphous structures may also be

considered as long as the assumption of the Cauchy–Born rule still applies.
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Then the Cauchy–Born rule can be stated in a more precise manner by

rðijÞ ¼ FYðjÞ � FYðiÞ

¼ FRðijÞ:
ð32Þ

In defect regions and through the homogenization theory via Eq. (17), the rule becomes

rðijÞ ¼ FRðijÞ þ �rrðijÞ; ð33Þ

where �rrðijÞ ¼ u
½1

ðjÞ � u

½1

ðiÞ is the additional term to account for high energy regions.

For the energy associated with the deformation of the atoms, we use a modified form of the so-called

Potential II parameterization of the Tersoff–Brenner potential (Tersoff, 1988; Brenner, 1990). It takes the

form

W ¼ 1

N
½EbðYþ qÞ � EbðYÞ
; ð34Þ

where W is the energy density of the frozen system, N is the number of atoms in the cell, and Eb is the

binding energy given for a pure carbon system by

EbðrÞ ¼
X
i

X
jð>iÞ

½VRðrðijÞÞ � �BBVAðrðijÞÞ
; ð35Þ

�BB ¼ 1
2
ðBðijÞ þ BðjiÞÞ; ð36Þ

VRðrÞ ¼
fðijÞðrÞDðeÞ

ðS � 1Þ e�
ffiffiffiffi
2S

p
bðr�RðeÞÞ; ð37Þ

VAðrÞ ¼
fðijÞðrÞDðeÞS
ðS � 1Þ e�

ffiffi
2
S

p
bðr�RðeÞÞ; ð38Þ

fðijÞðrÞ ¼

1; r < Rð1Þ;
1

2
1þ cos

pðr � Rð1ÞÞ
ðr � Rð2ÞÞ

� �� �
; Rð1Þ < r < Rð2Þ;

0; r > Rð2Þ;

8>><
>>: ð39Þ

BðijÞ ¼ 1

"
þ
X
kð6¼i;jÞ

GðhðijkÞÞfðikÞðrðikÞÞ
#�d

; ð40Þ

GðhÞ ¼ a0 1

(
þ c20
d20

� c20
d20 þ ð1þ cos hÞ2

)
; ð41Þ

with the constants given in Table 1. The modification in this work comes by way of omitting the extra bond-

order term in (Brenner, 1990), which is primarily used for problems involving changes in coordination

numbers. We therefore presently restrict our consideration to classes of deformation involving no change in

coordination.

Given that the energy can be written as a function of the atom displacements, Eq. (25) can be expressed
in a form conducive to atom representations. We equate v½1
 to the rate of atom displacement and attempt to

solve the equivalent form
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o

oYj
Cijkl

ov½1
k
oYl

¼ � oCijkl
oYj

ov½0
k
oXl

ð42Þ

under periodic boundary conditions. The solution to Eq. (42) is found as the zero of oR in the equation

oR ¼ Kv½1
 � D � r0v
½0
ðxÞ; ð43Þ

where K is the N � N Hessian and is given by

K ¼ o2W

oqoq
; ð44Þ

where q is the vector of atom displacements of size 3N (in three dimensions) and D is a third order un-

symmetric tensor that is obtained from the first derivative of the Euler–Lagrange equation with respect to
the local deformation gradient given by

D ¼ � o2W

oqoF
: ð45Þ

The size of D depends on the dimensionality of the problem. In three dimensions, it can be expressed as an
N � 9 matrix, where 9 corresponds to the number of independent components of F.

5. Multiscale equation

Once Eq. (43) has been solved for v½1
, the remaining task is to formulate a tractable global scale

boundary value problem. The key distinction between this investigation and conventional continuum

formulations, such as hyperelasticity, is the conspicuous incorporation of v½1
, a fine-scale/atomistic

quantity, in the global scale equations, and the definition of the material property tensor completely in

terms of atomistic variables.

We return to Eq. (24), recognizing that v½1
 is now known. Incorporating the definition for the first
Lagrangian elasticity tensor from Eq. (9) yields

1

jY j

Z
V

Z
Y

o2W

oFoF
:: ½rXdu½0
ðXÞ 
 ðrX v

½0
ðXÞ þ rY v
½1
ðYÞÞ
dY dV

¼
Z
oV

du½0
ðXÞ � _tt0 dAþ
Z
V

du½0
ðXÞ � _ff0 dV ; 8 du½0
: ð46Þ

Then, using the definition of F in Eq. (1) and assuming a first-order Taylor series representation for the time

derivative gives,

Table 1

Parameters for Tersoff–Brenner potential

RðeÞ 1.39 �AA

DðeÞ 6.0 eV

S 1.22

b 2.1 �AA

d 0.5

Rð1Þ 1.7 �AA
Rð2Þ 2.0 �AA

a0 0.00020813

c20 3302

d20 3.52
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1

jY j

Z
V

Z
Y

o2W

oFoF
:: ðrXdu½0
ðXÞ 
 rX v

½0
ðXÞÞdY dV

¼
Z
oV

du½0
ðXÞ � _tt0 dAþ
Z
V

du½0
ðXÞ � _ff0 dV

� 1

jY j

Z
V

Z
Y

o2W

oFoq
: �ðrXdu½0
ðXÞ 
 v½1
ðYÞÞdY dV ; 8 du½0
; ð47Þ

where there is now a double contraction on rXdu½0
 and a single contraction on v½1
 in the last expression

of Eq. (47). The solution to Eq. (47) yields v½0
. It is noteworthy that the last term is zero when the

energy distribution over Y is constant, i.e., when the atom arrangement forms a perfect lattice. This

reduces the problem to a classical harmonic approximation where the first Lagrangian elasticity tensor

is assumed to model the material behavior. In Eq. (47), the last term serves as a corrective force in

regions of highly energetic atoms, i.e., nonlocal regions, to account for defects and lattice inhomoge-
neities.

6. The Euler–Lagrange equations and the Hessian

In this section, the analytic forms of the Euler–Lagrange equations and Hessian are derived for a general

potential. The lengthy algebra typically needed to obtain Eqs. (44) and (45) for the specific case of the

Tersoff–Brenner potential are shown in greater detail in Appendix A, and only general forms are derived

here. The Euler–Lagrange equation is the first derivative of the Lagrangian with respect to the degrees of

freedom. In this problem, the Lagrangian is the negative of the atomistic energy density, which we presently
assume is equivalent to the free energy at zero temperature. The Euler–Lagrange equation is therefore given

by

E ¼ oW

oqðmÞ

¼ 1

N
oEb

oqðmÞ
;

ð48Þ

and using the chain rule for derivatives, it is

E ¼ 1

N
oEb

oqðmÞ

¼ 1

N
oEb

orðijÞ
� orðijÞ
oqðmÞ

 
þ oEb

orðikÞ
� orðikÞ
oqðmÞ

þ oEb

orðjkÞ
� orðjkÞ
oqðmÞ

!
:

ð49Þ

Here, we have implicitly assumed that there are three independent atomic position vectors. One can show

quite easily that there are in fact only two by using the relationship rðjkÞ ¼ rðikÞ � rðijÞ.
The Hessian is obtained by taking an additional derivative of the Euler–Lagrange equations. Specifi-

cally, we again make use of the chain rule to obtain

P.W. Chung, R.R. Namburu / International Journal of Solids and Structures 40 (2003) 2563–2588 2571



K ¼ o2W

oqðnÞoqðmÞ
¼ 1

N
o2Eb

oqðnÞoqðmÞ

¼ 1

N
o2Eb

orðijÞorðijÞ
:

orðijÞ

oqðnÞ

 "

 orðijÞ

oqðmÞ

!
þ o2Eb

orðijÞorðikÞ
:

orðijÞ

oqðnÞ

 

 orðikÞ

oqðmÞ

!
þ o2Eb

orðikÞorðijÞ
:

orðikÞ

oqðnÞ

 

 orðijÞ

oqðmÞ

!

þ o2Eb

orðikÞorðikÞ
:

orðikÞ

oqðnÞ

 

 orðikÞ

oqðmÞ

!
þ o2Eb

orðjkÞorðjkÞ
:

orðjkÞ

oqðnÞ

 

 orðjkÞ

oqðmÞ

!
þ o2Eb

orðijÞorðjkÞ
:

orðijÞ

oqðnÞ

 

 orðjkÞ

oqðmÞ

!

þ o2Eb

orðjkÞorðijÞ
:

orðjkÞ

oqðnÞ

 

 orðijÞ

oqðmÞ

!
þ o2Eb

orðikÞorðjkÞ
:

orðikÞ

oqðnÞ

 

 orðjkÞ

oqðmÞ

!

þ o2Eb

orðjkÞorðikÞ
:

orðjkÞ

oqðnÞ

 

 orðikÞ

oqðmÞ

!#
: ð50Þ

Second derivatives of the interatom vectors are zero, i.e.,

o2rðijÞ

oqðmÞoqðnÞ
¼ o2

oqðmÞoqðnÞ
ðYðjÞ þ qðjÞ � YðiÞ þ qðiÞÞ ð51Þ

¼ 0 8ðm; nÞ: ð52Þ

Next, the appropriate right-hand side expressions are derived for Eqs. (43) and (45). This involves the use of
the chain rule again to obtain

o2W

oqðmÞoF
¼ 1

N
o2Eb

orðijÞorðijÞ
:

orðijÞ

oF

 "

 orðijÞ

oqðmÞ

!
þ o2Eb

orðijÞorðikÞ
:

orðikÞ

oF

 

 orðijÞ

oqðmÞ

!
þ o2Eb

orðikÞorðijÞ
:

orðijÞ

oF

 

 orðikÞ

oqðmÞ

!

þ o2Eb

orðikÞorðikÞ
:

orðikÞ

oF

 

 orðikÞ

oqðmÞ

!
þ o2Eb

orðijÞorðjkÞ
:

orðjkÞ

oF

 

 orðijÞ

oqðmÞ

!
þ o2Eb

orðjkÞorðijÞ
:

orðijÞ

oF

 

 orðjkÞ

oqðmÞ

!

þ o2Eb

orðikÞorðjkÞ
:

orðjkÞ

oF

 

 orðikÞ

oqðmÞ

!
þ o2Eb

orðjkÞorðikÞ
:

orðikÞ

oF

 

 orðjkÞ

oqðmÞ

!
þ o2Eb

orðjkÞorðjkÞ
:

orðjkÞ

oF

 

 orðjkÞ

oqðmÞ

!#
;

ð53Þ

and by definition,

orðijÞ

oF
¼ RðijÞ and

orðikÞ

oF
¼ RðikÞ: ð54Þ

Finally, we use a similar approach to define the first Lagrangian elasticity tensor. This is the traditional

way of estimating the elastic properties of a solid. Using the chain rule once again gives,

o2W

oFoF
¼ 1

N
o2Eb

orðijÞorðijÞ
:

orðijÞ

oF

��

 orðijÞ

oF

�
þ o2Eb

orðijÞorðikÞ
:

orðikÞ

oF

�

 orðijÞ

oF

�
þ o2Eb

orðikÞorðijÞ
:

orðijÞ

oF

�

 orðikÞ

oF

�

þ o2Eb

orðikÞorðikÞ
:

orðikÞ

oF

�

 orðikÞ

oF

�
þ o2Eb

orðijÞorðjkÞ
:

orðjkÞ

oF

�

 orðijÞ

oF

�
þ o2Eb

orðjkÞorðijÞ
:

orðijÞ

oF

�

 orðjkÞ

oF

�

þ o2Eb

orðikÞorðjkÞ
:

orðjkÞ

oF

�

 orðikÞ

oF

�
þ o2Eb

orðjkÞorðikÞ
:

orðikÞ

oF

�

 orðjkÞ

oF

�
þ o2Eb

orðjkÞorðjkÞ
:

orðjkÞ

oF

�

 orðjkÞ

oF

��
:

ð55Þ

2572 P.W. Chung, R.R. Namburu / International Journal of Solids and Structures 40 (2003) 2563–2588



The first Lagrangian elasticity tensor is used in Eq. (47), whose solution gives v½0
. In a perfect lattice, Eq.

(55) provides the only atomistic material information needed to solve the macroscopic continuum problem.

The next section illustrates this by showing that the perturbation is zero for a uniform crystal.

7. Example problems

7.1. Example I: perfect 1-D atomic lattice

To illustrate the calculation, a 1-D analytical example is presented. The Tersoff–Brenner potential is used

to represent the energetics of a 1-D single-species chain of carbon atoms. The objective here is to solve Eqs.

(42) and (43) for v½1
 and demonstrate a simple case of a perfect lattice using this method.
One atom comprises the periodic unit cell, but to account for the effects of triples, two ‘‘fictitious’’ atoms

are assumed to extend beyond the boundaries of the cell on each side as illustrated in Fig. 1. Periodic

conditions apply at the cell boundaries. The equilibrium lattice constant for the chain is r0 ¼ 1:86868 �AA.

The following two conditions stem from the 1-D assumption,

h ¼ p;

Rð1Þ < r < Rð2Þ:
ð56Þ

This simplifies the expressions in Appendix A. The resulting Hessian for three arbitrary colinear atoms

ði; j; kÞ is obtained as

½KðijkÞ
 ¼
K

ðijkÞ
11 K

ðijkÞ
12 K

ðijkÞ
13

K
ðijkÞ
21 K

ðijkÞ
22 K

ðijkÞ
23

K
ðijkÞ
31 K

ðijkÞ
32 K

ðijkÞ
33

2
64

3
75; ð57Þ

where KðijkÞ
mn ¼ KðijkÞ

nm and the terms are defined by

K
ðijkÞ
11 ¼ V 00

R � �BBV 00
A þ a0dV 0

AB
1þ1

d
ðijÞ f

0
ðikÞ þ

d
2
ðd þ 1ÞVAB

1þ2
d

ðijÞ ða0f 0ðikÞÞ
2 þ a0d

2
VAB

1þ1
d

ðijÞ f
00
ðikÞ; ð58Þ

K
ðijkÞ
12 ¼ �V 00

R þ �BBV 00
A � a0d

2
V 0
AB

1þ1
d

ðijÞ f
0
ðikÞ; ð59Þ

K
ðijkÞ
13 ¼ � a0d

2
V 0
AB

1þ1
d

ðijÞ f
0
ðikÞ �

d
2
ðd þ 1ÞVAB

1þ2
d

ðijÞ ða0f
0
ðikÞÞ

2 � a0d
2
VAB

1þ1
d

ðijÞ f
00
ðikÞ; ð60Þ

K
ðijkÞ
22 ¼ V 00

R � �BBV 00
A ; ð61Þ

3

Cell boundaries

1                                                    45

Fictitious atoms Fictitious atoms

2

Fig. 1. Unit cell of the 1-D carbon chain. The atoms are labeled by identifying numbers.
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K
ðijkÞ
23 ¼ a0d

2
V 0
AB

1þ1
d

ðijÞ f
0
ðikÞ; ð62Þ

K
ðijkÞ
33 ¼ d

2
ðd þ 1ÞVAB

1þ2
d

ðijÞ ða0f 0ðikÞÞ
2 þ a0d

2
VAB

1þ1
d

ðijÞ f
00
ðikÞ: ð63Þ

Upon assembly of the two unique pairs (31,12) and their associated triples (123,132) in Fig. 1, the final

assembled Hessian of the global system is given by the matrix,

½K
 ¼
K11 K12 K13

K21 K22 K23

K31 K32 K33

2
64

3
75; ð64Þ

which is assembled through the operation,

½K
 ¼
Gði;j;kÞ
ðmÞ

Gði;j;kÞ
ðnÞ

½KðijkÞ
 ¼ Kmn; ð65Þ

where
F

is the addition operator over all unique pair and triple combinations of ði; j; kÞ and ðmÞ and ðnÞ are
displacement degrees of freedom for each atom. In Eq. (65), ½K
 is symmetric once again, and its com-

ponents are obtained in detail for the problem shown in Fig. 1 as follows:

K11 ¼ K
ð123Þ
11 þK

ð315Þ
22 þK

ð241Þ
33 ; ð66Þ

K12 ¼ K
ð123Þ
12 þK

ð241Þ
13 ; ð67Þ

K13 ¼ K
ð123Þ
13 þK

ð315Þ
12 ; ð68Þ

K22 ¼ K
ð123Þ
22 þK

ð241Þ
11 ; ð69Þ

K23 ¼ K
ð123Þ
23 ; ð70Þ

K33 ¼ K
ð123Þ
33 þK

ð315Þ
11 : ð71Þ

This constitutes the stiffness matrix K in Eq. (43).

The next step is to calculate the right-hand side of Eq. (42), which is equivalent to calculating D and

multiplying by the global rate of the deformation gradient. Using Eqs. (45) and (53), the right-hand side for

three colinear atoms ði; j; kÞ is obtained as

fDðijkÞg ¼
D

ðijkÞ
1

D
ðijkÞ
2

D
ðijkÞ
3

8>><
>>:

9>>=
>>;; ð72Þ

2574 P.W. Chung, R.R. Namburu / International Journal of Solids and Structures 40 (2003) 2563–2588



where the components are defined by

D
ðijkÞ
1 ¼ RðijÞðV 00

R � �BBV 00
A Þ þ ðRðikÞ � RðijÞÞ

a0d
2
V 0
AB

1þ1
d

ðijÞ f
0
ðikÞ

� �

þ RðikÞ
d
2
ðd

�
þ 1ÞVAB

1þ2
d

ðijÞ a0f 0ðikÞ
�  2

þ a0d
2
VAB

1þ1
d

ðijÞ f
00
ðikÞ

�
; ð73Þ

D
ðijkÞ
2 ¼ �RðijÞðV 00

R � �BBV 00
A Þ � RðikÞ

a0d
2
V 0
AB

1þ1
d

ðijÞ f
0
ðikÞ

� �
; ð74Þ

D
ðijkÞ
3 ¼ �RðijÞ

a0d
2
V 0
AB

1þ1
d

ðijÞ f
0
ðikÞ

� �
� RðikÞ

d
2
ðd

�
þ 1ÞVAB

1þ2
d

ðijÞ a0f 0ðikÞ
�  2

þ a0d
2
VAB

1þ1
d

ðijÞ f
00
ðikÞ

�
: ð75Þ

As earlier, the assembly operation

fDg ¼
Gði;j;kÞ
ðmÞ

fDðijkÞg ¼ Dm; ð76Þ

yields the right-hand side of the global system given by,

fDg ¼
D1

D2

D3

8<
:

9=
;; ð77Þ

where the components are

D1 ¼ D
ð123Þ
1 þD

ð315Þ
2 þD

ð241Þ
3 ; ð78Þ

D2 ¼ D
ð123Þ
2 þD

ð241Þ
1 ; ð79Þ

D3 ¼ D
ð123Þ
3 þD

ð315Þ
1 : ð80Þ

Under the assumption of a 1-D perfect lattice, we have RðijÞ ¼ RðikÞ and, consequently,D1 ¼ 0. Then, we can

satisfy the periodicity condition and the rigid body constraint by setting v½1
ð2Þ ¼ v½1
ð3Þ ¼ 0. The solution is

therefore

v½1
ð1Þ ¼ v½1
ð2Þ ¼ v½1
ð3Þ ¼ 0: ð81Þ

In light of Eq. (81), the last term in Eq. (47) is zero, and the material properties are obtained from the

atomistic energy density solely through Eq. (55). This result shows that in a defect-free lattice, the homo-

genization method coincides with the conventional atomistic hyperelasticity problem. The next section

shows an example in which a defect causes an inhomogeneous energy distribution, leading to a situation

where homogenization is needed to average out the energy.

7.2. Example II: 1-D atomic lattice with defect

Consider the problem shown in Fig. 2, where the center atom is displaced by a distance L from its

original energy minimizing configuration. This displacement of the center atom constitutes the defect.
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With this change, the key stiffness matrix term in Eq. (66) is now

K11 ¼ V 00
Rð12Þ

� �BBð12ÞV 00
Að12Þ

þ a0dV 0
Að12Þ
B
1þ1

d
ð12Þf

0
ð13Þ þ

d
2
ðd þ 1ÞVAð12ÞB

1þ2
d

ð12Þða0f
0
ð13ÞÞ

2 þ a0d
2
VAð12ÞB

1þ1
d

ð12Þf
00
ð13Þ

þ V 00
Rð13Þ

� �BBð13ÞV 00
Að13Þ

þ a0dV 0
Að13Þ
B
1þ1

d
ð13Þf

0
ð12Þ þ

d
2
ðd þ 1ÞVAð13ÞB

1þ2
d

ð13Þða0f 0ð12ÞÞ
2 þ a0d

2
VAð13ÞB

1þ1
d

ð13Þf
00
ð12Þ; ð82Þ

and likewise, Eq. (78) is now

D1 ¼ Rð12ÞðV 00
Rð12Þ

� �BBð12ÞV 00
Að12Þ

Þ þ ðRð13Þ � Rð12ÞÞ
a0d
2
V 0
Að12Þ
B
1þ1

d
ð12Þf

0
ð13Þ

� �
þ Rð13Þ

d
2
ðd

�
þ 1ÞVAð12ÞB

1þ2
d

ð12Þða0f
0
ð13ÞÞ

2

þ a0d
2
VAð12ÞB

1þ1
d

ð12Þf
00
ð13Þ

�
� Rð13Þ V 00

Rð13Þ

�
� �BBð13ÞV 00

Að13Þ

 
� ðRð12Þ � Rð13ÞÞ

a0d
2
V 0
Að13Þ
B
1þ1

d
ð13Þf

0
ð12Þ

� �

� Rð12Þ
d
2
ðd

�
þ 1ÞVAð13ÞB

1þ2
d

ð13Þða0f
0
ð12ÞÞ

2 þ a0d
2
VAð13ÞB

1þ1
d

ð13Þf
00
ð12Þ

�
; ð83Þ

where Rð12Þ ¼ r0 � L and Rð13Þ ¼ r0 þ L. Then, solving Eq. (43) under periodic boundary conditions gives

v½1
1 ¼ D1

K1

ov½0


ox
; v½1
2 ¼ v½1
3 ¼ 0: ð84Þ
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Fig. 3. Distribution of v½1
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 solution as a function of the defect size L.

3

Cell boundaries

2                         45

Fictitious atomsFictitious atoms

1

L

Fig. 2. Unit cell of 1-D carbon chain with periodic defect.
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The v½1
=r0v½0
 solution as a function of L=r0 is shown in Fig. 3. As expected, the solution has symmetry

about the origin and grows asymptotically larger as the size of the defect (L) grows closer to the cut-off

radii. We intentionally avoid larger defects due to the nonconvex structure of the energy well associated

with the Tersoff–Brenner potential. This generally leads to unphysical discontinuities in the perturbation
velocity (v½1
) due to discontinuous second derivatives of the atomistic energy with respect to the defect size.

This is attributable to the construction of the empirical potential in Eqs. (35)–(41), which is suited, by

design, for systems where nearest neighbor atoms, even in defect regions, are within the cut-off radius Rð2Þ.

It is also noteworthy that arbitrary defect densities can be treated by appropriate modification of the unit

cell. In most cases, one can tailor the desired density by increasing the size of the unit cell and performing

the summations and the assembly of the atomistic discrete equations over more atoms. Fig. 4 illustrates this

idea for the 1-D carbon chain.

Numerical experiments show that as the size of the unit cell increases, the perturbative displacement has
a sharp discontinuity at the defect. Fig. 5 shows this nonlocal behavior as the number of atoms increases.

The problem is of a single defect in chains of increasing size. The defect magnitude is held fixed at

L=r0 ¼ 0:01. The nonlocal discontinuity of the perturbative velocity qualitatively agrees with traditional

displacement jumps that occur at dislocation cores. The discontinuity indicates that the material property at

the defect ðo2W =oFoFÞ is modified by the last term in Eq. (47), an amount proportional to v½1
 that serves as
a correcting force for the nonlocal effect.

Although the primary details of the method have been demonstrated in these two examples, the method

can be extended to consider the multiscale problem shown in Eq. (47) for more general cases involving self-
consistent solutions with Eq. (43) as in the next section.

Defect

Fig. 4. Larger chain of atoms in perfect arrangement around the defect region decreases the defect density.
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Fig. 5. Distribution of v½1
=r0v½0
 along unit cell length for varying number of atoms (L=r0 ¼ 0:01).

P.W. Chung, R.R. Namburu / International Journal of Solids and Structures 40 (2003) 2563–2588 2577



7.3. Example III: 2-D graphene with defect

The method can be generalized to multiaxial problems. In this example, we consider graphene with

three types of point defects: interstitial, equilibrium point vacancy and saddle point vacancy. The atom
positions around the point defects were first computed using quenched molecular dynamics. These are il-

lustrated in Fig. 6 together with the original defect-free configuration. Similar defect structures have been

encountered both numerically and experimentally (Kaxiras and Pandey, 1988; Hjort and Stafstr€oom, 2000;

Krasheninnikov et al., 2002).

The effective elastic constants for the defect-free case were in the form of the first Lagrangian elasticity

tensor (55), which compare reasonably with experimental results. Using the second derivative of the

Tersoff–Brenner potential, the bulk values (in units eV/atom) for graphene were computed,

C1111 ¼ 66:51; C2112 ¼ 21:63;

C1122 ¼ 20:06; C2121 ¼ 24:83;

C1212 ¼ 24:83; C2211 ¼ 20:06;

C1221 ¼ 21:63; C2222 ¼ 66:51;

ð85Þ

and terms not listed are zero. The equilibrium energy is )7.37563 eV/atom and nearest neighbor bond
length 1.45 �AA. For an assumed layer thickness of 3.4 �AA, which is the standard layer separation thickness for

(a) 

(c) (d)

(b)

 

Fig. 6. Atom configurations in periodic cell. Lines are used to denote regions near the defect. (a) Defect-free, (b) interstitial,

(c) equilibrium vacancy and (d) Saddle point vacancy.

2578 P.W. Chung, R.R. Namburu / International Journal of Solids and Structures 40 (2003) 2563–2588



graphite, the effective Young�s modulus from the bulk is Y ¼ 0:986 TPa with an effective Poisson�s ratio of

0.232. These values agree well with measured values for graphite and carbon nanotubes (Krishnan et al.,

1998).
The model problem solved at the macroscopic scale is depicted in Fig. 7. The uniform grid is composed

of 25 four-noded quadrilateral elements. The right edge is pulled uniformly and the left edge is held fixed.

All units of measure are carried through in terms of eV and �AA so that no assumption of a layer thickness is

required. That is, although the problem is two-dimensional, there is no need for a plane assumption.

The solution procedure involves application of incremental loads with iterative loops over Eq. (47) and

sub-loops over (43). The sub-loops seek converged values for v½1
 subject to the modification from Eq. (33).

In this problem, an overly cautious load increment of 1:0� 10�4 strain was used which ensured convergence

tolerances for both v½0
 and v½1
 far beyond 10�8 �AA.
The effective strain energy density and material properties are shown versus strain in Figs. 8 and 9. Of

key interest are the sudden jumps that occur for the effective material properties of saddle point and in-

terstitial defect scenarios at approximate strain values of 0.05 and 0.15, respectively. This is attributable to

the relative instability of those types of point defects. Such observations were made previously for the

saddle point vacancy in (Kaxiras and Pandey, 1988). The effective properties and energies at larger strains

at and after the instability are meaningless and should not be used for inferences. The instability occurs in

this problem because the separation distance between neighboring atoms near the point defect exceeds the

cut-off radius because of the deformation, thereby distorting the strain energy and effective properties. We
expect that the actual maximum allowable strain before instability occurs is much smaller because of the

present zero-temperature assumption.

It is noteworthy that the approximate atom density in the longitudinal direction decreases (cell elon-

gates) while it increases in the transverse direction. The subsequent material nonlinear affect it has on the

properties is decrease in C1111 while increase in C2222. We also note that the interstitial point defect possesses

the highest values for material properties and lowest strain energy while the trends for the saddle point

vacancy are precisely the reverse. The defect-free structure exhibits stronger material properties and higher

strain energy than the equilibrium vacancy structure.
Comparing convergence rates between methodologies with homogenization (i.e., v½1
 6¼ 0) and without

homogenization (i.e., v½1
 ¼ 0) shows the former with a distinct advantage. 2 The equilibrium vacancy

configuration is used here. The convergence results are illustrated in Fig. 10. The calculation is of the

transverse displacement of the upper right corner node of the mesh in Fig. 7 as it evolves with the total

ou

Fig. 7. Finite element model of macroscopic problem.

2 The methodology without homogenization implies an approach whose material property tensor is computed directly from the

second derivative of the energy potential and whose formulation does not involve a perturbative term.
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number of computation cycles, Nsteps. The computation cycle is computed by adding the total number of

nonlinear iterations steps (major loops plus sub-loops) with the total number of load increments, which is a
crude way to estimate the convergence behavior. The number of load increments is selected to ensure that

the final transverse displacement in the two methods is less than one percent different in magnitude. Fig. 10

shows that the total required number of calculation steps is smaller in the homogenization result by a factor

of four.
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Fig. 11. Atom displacements due to global deformation.

Fig. 12. Atom displacements due to homogenization method.
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This convergence behavior is attributable to the addition of the v½1
 term in Eq. (33), which is closer

to the energy minimizing configuration than Eq. (32) alone. Fig. 11 illustrates the atom displacement

due to Eq. (32) relative to a local coordinate system centered on the periodic cell, and Fig. 12 illustrates

the subsequent correction from Eq. (33). Arrow sizes correspond to relative magnitude of displace-
ment.

The uniform strain applied in this example results in a uniform state of strain throughout the entire mesh

in Fig. 7. It should be noted that more complex loading scenarios can be treated merely by changing the

boundary conditions of the problem. These simple results, however, are indicative of the generality of the

method for two and three dimensional problems.

8. Closing remarks

Linking atomic scale physics with continuum scale phenomena is of keen interest in the mechanical study
of solids and nanostructures. The effects that dominate the mechanical behavior at the continuum scale

typically initiate and evolve from the atomic scale. Moreover, periodic structures can emanate from nano-

patterning and epitaxy through stresses induced from an underlying substrate. Despite numerous

promising methods in the literature that are capable of linking scales up to the micron level, periodic

structures with global dimensions at and beyond the millimeter range – needed for mass producing

nanoscale devices – have only begun to be studied. To this end, we have attempted to exploit the features of

homogenization theory to devise a scheme which passes atomistic information to very large continuum

scales.
We have applied the Cauchy Born rule to the atom scale by assuming that the configuration of atoms

used to solve for the perturbation displacement at each load increment is indeed the minimizing configu-

ration of the atomistic energy. We have not considered the method in conjunction with a lattice statics

routine, i.e., various strategies of minimizing the atomistic energy by quenched molecular dynamics or

solving Newton�s equations to minimize the interatom forces. These assumptions (i.e., zero temperature

and Cauchy–Born) also precludes the formulation from modeling thermally activated phenomena such as

crack growth, propagation, or damage evolution. However, it can be used to estimate mechanical effects

across coupled length scales and, if needed, serve as the underlying framework for modified algorithms that
can account for such problems.

We demonstrated the method for one and two dimensional problems containing point defects. Me-

chanical data were reported from numerical experiments. The paucity of experimental data for nano-

mechanics makes validation difficult. However, the material properties stemming from the reference

configuration compares very well with available published measurements and the observed trends from

mechanical deformation agree with generally accepted intuition.

For this work, a form of the Tersoff–Brenner Type II potential was considered. But the principles and

the general equations can be extended to any potential, provided the appropriate derivatives can be ob-
tained as in Appendix A. Typically for classical systems, onerous tensor algebra and calculus are required

or more computationally efficient procedures can be implemented to obtain derivatives numerically (Allen

and Tildesley, 1987).

The aim of this paper was to develop an approach by which atomistic physics can be embedded into a

continuum formulation for large scale systems. This goal has been achieved by formulating a consistent set

of equations involving a classical atomistic potential at the fine scale and general finite strain and defor-

mation elasticity at the coarse scale. Simple 1-D analytical results and 2-D numerical experiments were

shown to illustrate the approach and its features. More realistic multiaxial problems in two and three
dimensions for more detailed validation are the subjects of ongoing work.
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Appendix A. Derivatives of the Tersoff–Brenner Potential

The derivatives needed to form the Euler–Lagrange equations and the Hessian are shown here in detail.

To simplify the notation, we define the following expressions,

rðijÞ ¼ jrðijÞj; ðA:1Þ

and

f 0ðijÞðrÞ ¼
ofðijÞ
orðijÞ

f 00ðijÞðrÞ ¼
o2fðijÞ
or2ðijÞ

: ðA:2Þ

Note that although the equations are written in component form with respect to atoms, it is still in dyadic

notation due to the multiaxial components of rðijÞ. That is, rðijÞ � e1 is the component of the vector origi-

nating at atom i and terminating at atom j in the direction of e1, rðijÞ � e2 is the component in the direction of

e2, etc. From Eqs. (35)–(41), the derivatives in Eq. (49) are defined by

oEb

orðijÞ
¼
X
i

X
jð>iÞ

V 0
R

orðijÞ
orðijÞ

"
� VA

o�BB
orðijÞ

� �BBV 0
A

orðijÞ
orðijÞ

#
; ðA:3Þ

oEb

orðikÞ
¼
X
i

X
jð>iÞ

"
� VA

o�BB
orðikÞ

#
; ðA:4Þ

oEb

orðjkÞ
¼
X
i

X
jð>iÞ

"
� VA

o�BB
orðjkÞ

#
; ðA:5Þ

oVR
orðijÞ

¼ V 0
R ¼ f 0ðijÞ

DðeÞ

ðS � 1Þ e
�a1ðrðijÞ�RðeÞÞ � a1

fðijÞDðeÞ

ðS � 1Þ e
�a1ðrðijÞ�RðeÞÞ; ðA:6Þ

oVA
orðijÞ

¼ V 0
A ¼ f 0ðijÞ

DðeÞS
ðS � 1Þ e

�a2ðrðijÞ�RðeÞÞ � a2

fðijÞDðeÞS
ðS � 1Þ e�a2ðrðijÞ�RðeÞÞ; ðA:7Þ

o�BB
orðijÞ

¼ 1

2

(
� dB

1þ1
d

ðijÞ

X
k 6¼ði;jÞ

oGðhðijkÞÞ
orðijÞ

fðikÞ

� �
� dB

1þ1
d

ðjiÞ

X
k 6¼ði;jÞ

oGðhðjikÞÞ
orðijÞ

fðikÞ

� �)
; ðA:8Þ

o�BB
orðikÞ

¼ � d
2
B
1þ1

d
ðijÞ

X
k 6¼ði;jÞ

oGðhðijkÞÞ
orðikÞ

fðikÞ

�
þ GðhðijkÞÞf 0ðikÞ

orðikÞ
orðikÞ

�
; ðA:9Þ
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o�BB
orðjkÞ

¼ � d
2
B
1þ1

d
ðjiÞ

X
k 6¼ði;jÞ

oGðhðjikÞÞ
orðjkÞ

fjk

�
þ GðhðjikÞÞf 0jk

orðjkÞ
orðjkÞ

�
; ðA:10Þ

oGðhcÞ
orðmnÞ

¼ 2a0c20ð1þ cos hcÞ
½d20 þ ð1þ cos hcÞ2
2

ocoshc

orðmnÞ
; ðA:11Þ

for ðmnÞ ¼ ðijÞ or ðikÞ when c ¼ ðijkÞ and ðmnÞ ¼ ðijÞ or ðjkÞ when c ¼ ðjikÞ. The angles hðijkÞ and hðjikÞ,

shown in Fig. 13, are the angles subtending the connecting lines at the atoms i and j, respectively. Note that

rðijÞ ¼ �rðjiÞ. The following identities can also be shown:

orðijÞ
orðijÞ

¼ oðrðijÞ � rðijÞÞ1=2

orðijÞ

¼ 1

2

1

rðijÞ
2rðijÞ

¼ rðijÞ

rðijÞ
;

ðA:12Þ

ocoshðijkÞ

orðijÞ
¼ o

orðijÞ

rðijÞ � rðikÞ
rðijÞrðikÞ

� �

¼ rðikÞ

rðijÞrðikÞ
� rðijÞ
r2ðijÞ

cos hðijkÞ;
ðA:13Þ

ocoshðijkÞ

orðikÞ
¼ rðijÞ

rðijÞrðikÞ
� rðikÞ
r2ðikÞ

cos hðijkÞ; ðA:14Þ

ocoshðjikÞ

orðijÞ
¼ � rðjkÞ

rðjiÞrðjkÞ
þ rðjiÞ
r2ðjiÞ

cos hðjikÞ; ðA:15Þ

j

k

i

r

θ(jik)

(ij)r

(jk)

(ji)r

(ijk)θ

(ik)r

Fig. 13. Angles and interatom vectors.
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ocoshðjikÞ

orðjkÞ
¼ rðjiÞ

rðjiÞrðjkÞ
� rðjkÞ
r2ðjkÞ

cos hðjikÞ: ðA:16Þ

It is important to note that

orðijÞ

oqðmÞ
¼

�I m ¼ i
I m ¼ j
0 m 6¼ ði; jÞ

8<
: ; ðA:17Þ

where I is the 3� 3 identity tensor for a 3-D system. The derivative with respect to rðikÞ can be obtained

likewise. This indicates that the summations in Eqs. (A.3), (A.4), (A.8) and (A.9), when multiplied by Eq.

(A.17) in Eq. (49) are nontrivial if and only if m is equal to i, j, or k.
For the Hessian in Eq. (50), the differential terms are defined by

o2Eb

orðijÞorðijÞ
¼
X
i

X
jð>iÞ

V 00
R

�"
� �BBV 00

A

 orðijÞ
orðijÞ

�

 orðijÞ
orðijÞ

�
þ V 0

A

o2rðijÞ
orðijÞorðijÞ

� V 0
A

o�BB
orðijÞ

 

 orðijÞ
orðijÞ

!

� VA
o2�BB

orðijÞorðijÞ
� V 0

A

orðijÞ
orðijÞ

 

 o�BB
orðijÞ

!#
; ðA:18Þ

o2Eb

orðijÞorðikÞ
¼
X
i

X
jð>iÞ

"
� V 0

A

o�BB
orðikÞ

 

 orðijÞ
orðijÞ

!
� VA

o2�BB
orðijÞorðikÞ

#
; ðA:19Þ

o2Eb

orðikÞorðijÞ
¼
X
i

X
jð>iÞ

"
� V 0

A

orðijÞ
orðijÞ

 

 o�BB
orðikÞ

!
� VA

o2�BB
orðikÞorðijÞ

#
; ðA:20Þ

o2Eb

orðikÞorðikÞ
¼
X
i

X
jð>iÞ

"
� VA

o2�BB
orðikÞorðikÞ

#
; ðA:21Þ

o2Eb

orðjkÞorðjkÞ
¼
X
i

X
jð>iÞ

"
� VA

o2�BB
orðjkÞorðjkÞ

#
; ðA:22Þ

o2Eb

orðijÞorðjkÞ
¼
X
i

X
jð>iÞ

"
� V 0

A

orðijÞ
orðijÞ

 

 o�BB
orðjkÞ

!
� VA

o2�BB
orðijÞorðjkÞ

#
; ðA:23Þ

o2Eb

orðjkÞorðijÞ
¼
X
i

X
jð>iÞ

"
� V 0

A

o�BB
orðjkÞ

 

 orðijÞ
orðijÞ

!
� VA

o2�BB
orðjkÞorðijÞ

#
; ðA:24Þ

o2Eb

orðikÞorðjkÞ
¼
X
i

X
jð>iÞ

"
� VA

o2�BB
orðikÞorðjkÞ

#
; ðA:25Þ

o2Eb

orðjkÞorðikÞ
¼
X
i

X
jð>iÞ

"
� VA

o2�BB
orðjkÞorðikÞ

#
; ðA:26Þ
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and additional algebra yields

V 00
R ¼ o2VR

orðijÞorðijÞ
¼

f 00ðijÞD
ðeÞ

ðS � 1Þ

"
�
2a1f 0ðijÞD

ðeÞ

ðS � 1Þ þ a2
1fðijÞD

ðeÞ

ðS � 1Þ

#
e�a1ðrðijÞ�RðeÞÞ; ðA:27Þ

V 00
A ¼ o2VA

orðijÞorðijÞ
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ðeÞS
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e�a2ðrðijÞ�RðeÞÞ; ðA:28Þ
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X
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o2�BB
orðikÞorðjkÞ

¼ o2�BB
orðjkÞorðikÞ

¼ 0; ðA:36Þ

o2rðijÞ
orðijÞorðijÞ

¼ I
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� rðijÞ 
 rðijÞ

r3ðijÞ
: ðA:37Þ

To complete the derivation, the following identities are needed:

o2G
orðmnÞorðpqÞ

¼ �8a0c20ð1þ cos hcÞ2

ðd20 þ ð1þ cos hcÞ2Þ3
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orðmnÞorðpqÞ
; ðA:38Þ

with the appropriate combinations of ðmn; pqÞ ¼ ðij; ijÞ; ðij; ikÞ; ðik; ijÞ, and ðik; ikÞ for c ¼ ijk and

ðmn; pqÞ ¼ ðij; jkÞ; ðjk; ijÞ; ðjk; jkÞ for c ¼ jik, and,
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; ðA:39Þ
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o2 cos hðjikÞ
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ðA:46Þ

This completes the closed-form derivation of the Hessian for the Tersoff–Brenner potential.
Despite the relative algebraic complexity of the expressions, the calculations can be performed readily

using computers. The algorithm is based on an additive assembly process by casting the equations in their

equivalent matrix forms and then summing over all unique pairs and triples of atoms, which translates well

to an iterative computational methodology.
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